Finding Local and Periodic Association Rules from Fuzzy Temporal Data

نویسندگان

  • F. A. Mazarbhuiya
  • M. Shenify
  • Md. Husamuddin
چکیده

The problem of finding association rules from a dataset is to find all possible associations that hold among the items, given a minimum support value and a minimum confidence. This involves finding frequent sets first and then the association rules that hold within the items in the frequent sets. The problem of mining temporal association rules from temporal dataset is to find association rules between items that hold within certain time intervals but not throughout the dataset. This involves finding frequent sets that are frequent at certain time intervals and then association rules among the items present in the frequent sets. In some of the applications the time of transaction is imprecise; we call the associated dataset as fuzzy temporal dataset. In such datasets, we may find set of items that are frequent in certain fuzzy time intervals. We call these as locally frequent sets over fuzzy time intervals and the associated association rules as local association rule over fuzzy time intervals. These association rules cannot be discovered in the usual way because of fuzziness involved in temporal features. Normally these association rules are periodic in nature. We call such rules as periodic association rules over fuzzy time interval. We propose modification to the A-priori algorithm to compute locally frequent sets and to extract periodic frequent sets and periodic association rules from fuzzy temporal data. Kew-words: Core of a fuzzy number, Data mining, frequent sets, fuzzy membership function, α-cut.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

Mining fuzzy periodic association rules

We develop techniques for discovering patterns with periodicity in this work. Patterns with periodicity are those that occur at regular time intervals, and therefore there are two aspects to the problem: finding the pattern, and determining the periodicity. The difficulty of the task lies in the problem of discovering these regular time intervals, i.e., the periodicity. Periodicities in the dat...

متن کامل

Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules

Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...

متن کامل

Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)

In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...

متن کامل

Evolving Temporal Fuzzy Association Rules from Quantitative Data with a Multi-Objective Evolutionary Algorithm

A novel method for mining association rules that are both quantitative and temporal using a multi-objective evolutionary algorithm is presented. This method successfully identifies numerous temporal association rules that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. The novelty of this research lies in exploring the composition of qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014